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ABSTRACT
The concern of this article is the analysis of the impact of increased volume (dila-
tion) and decreased strength of the rock material in the plastic zone on the displace-
ment field in the vicinity of the roadway. Elastic-plastic model of the behaviour of the 
rock material and the strength criterion of Coulomb-Mohr were assumed. The volume 
change of the rock material is controlled by the angle of dilation ψ, which determines 
dilation parameter β that is taken into account in the analysis. The influence of param-
eter β and the strength of the rock material, after crossing the border state of stress, in 
the field of displacements in the vicinity of the excavation and rock pressure on the 
elastic support of the excavation was proved. The relationships determining displace-
ment fields in the plastic zone which were obtained with consideration to in this zone 
of both the elastic and plastic displacement, as well as the relationships which were 
obtained without elastic deformations was discussed. The exact form of the equation 
for the displacement field in the plastic zone depends on how the elastic deformation 
in the plastic zone is defined. There are three ways of describing these deformations. 
In the first method it is assumed that in   plastic deformation area the elastic deforma-
tion constants are equal to the deformation constants at the plastic and elastic border. 
The second method of description is based on the assumption that the plastic zone is a 
thick-walled ring whose edges: internal and external have been appropriately debited. 
In the third method, elastic deformations in the plastic zone were made   dependent on 
the state of stress in the zone. The results are illustrated in a form of response curves 
of the rock mass. 

Keywords: state of displacement, roadway, elastic-plastic model, response curve of 
the rock mass, dilatation, decreased strength of rock material, reducing the strength of 
the rock material, Coulomb-Mohr criterion.

INTRODUCTION

The analysis of the state of stress and dis-
placement, and the analysis of the disturbed ar-
eas in the vicinity of underground (tunnel) exca-
vations are important research problems of rock 
mechanics. The solutions in this area are used 
in mining engineering, oil and gas engineering 
and construction engineering. In particular, they 
are used in the design of excavation mining (tun-
nels), stability analysis of roadways and shafts, 

test holes and wells for oil and gas. In the litera-
ture there are numerous works presenting solu-
tions describing the distribution of stresses and 
displacements around the mine excavations (tun-
nels) [1]. Many of these solutions are based on 
the concept of response curves of rock mass and 
support [11] and elastic-plastic [2,4] or the elas-
tic-brittle-plastic [14] models of the behaviour 
of the rock material, taken to the analytical de-
scription of the curves. An interesting discussion 
on the practical application of the convergence-
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confinement method for the design of a circular 
tunnel made   in elastic-plastic Coulomb-Mohr 
and Hoek-Brown centres was presented by Or-
este [10]. Gschwandtner [6] presented a method 
to evaluate the behaviour of the rock mass using 
three curves: response curve of the rock mass, 
the support response curve and the curve of lon-
gitudinal deformations. Based on these curves 
Gschwandtner [6] conducted an analysis of the 
effects of possible actions to enhance the rock 
mass (bonding, concrete spraying). Among the 
works presenting an analytical method to assess 
the behaviour of the rock mass in the vicinity of 
excavations on the model response curves rock 
mass and support one can include the work by 
Pilecki [12]. Many authors’ researches were fo-
cused on demonstrating the impact of the prop-
erties of the rock material on the state of stress 
and strain in the vicinity of the excavation, for 
example, Carranza-Torres [3], Marczak [8] dis-
cussed the issue of the impact angle of internal 
friction in the radial displacement contour of the 
excavation and the size of the plastic zone with 
consideration to the elastic-plastic of the rock 
mass and the condition Coulomb-Mohr strength. 
On the other hand, Mróz and Kruciński [9] pre-
sented a solution showing the impact of the resid-
ual strength of rock material with elastic-plastic 
characteristics on the state of stress and displace-
ment, and the size of disturbed zone around a cir-
cular underground excavation. Research on a dry 
rock mass paved way to a solutions according to 
the impact of water pressure on the behaviour of 
the rock material. Shin et al. [15] presented the 
results of the analysis of the behaviour of the rock 
mass around the tunnels based on the concept of 
the response of curve rock mass and taking into 
account the impact of groundwater percolates.

This paper presents a solution determining 
the displacement fields in the rock mass around 
the mine excavations taking into account the 
presence, in the immediate vicinity of the exca-
vation, zone of reduced capacity (called plastic 
zone), arising from the impact of stress exceeding 
the strength criterion of Coulomb-Mohr [5] and 
the occurrence of elastic area for plastic zone. The 
solution takes into account a possible increase in 
volume and a decrease in the strength of the rock 

material in the plastic zone. Changes in the vol-
ume of rock material is controlled by the angle of 
dilation ψ, which in elastic-plastic analysis of the 
behaviour of the rock mass using failure criterion 
the Coulomb-Mohr is related to the parameter β 
in the following way [16]:

ψ
ψβ

sin1
sin1

−
+

= (1)

The author proved the influence of the param-
eter β and the strength of the rock material after 
crossing the border state of stress in the field of 
displacements in the vicinity of the excavation 
and pressure rock mass on the support of the ex-
cavation. The relationships determining the field 
of displacements in the plastic zone were obtained 
with consideration to the presence in this zone the 
elastic and plastic deformation, as well as elastic 
deformations without.

DESCRIPTION OF THE PROBLEM AND 
TEST METHOD

In order to obtain exact solutions describing 
the behaviour of the rock mass in the vicinity of 
the excavation mining below listed model simpli-
fications of the considered excavation mining – 
the rock mass were adopted.

Excavation of circular cross-section and a 
radius (Fig. 1) was made in a homogeneous and 
isotropic rock mass of elastic-plastic character-
istics of the medium. In the rock mass there is a 
hydrostatic state of primary stress described by 
component p. The inner edge of the excavation 
is loaded by pressure pa (pa ≤ p). Flat state of 
strain, independent of the state of stresses along 
the axis of the pit is assumed. The issue is con-
sidered in a polar coordinate system, hence σr 
is the radial stress and σθ is the circumferential 
stress. σ1 and σ3 determine the principal stresses, 
the largest and smallest respectively, acting in 
the plane of the excavation, and σ2 means the 
indirect stress along the main axis of the excava-
tion. Rock mass behaves elastically linearly un-
til the moment when the state of stress does not 
meet the equation defining the failure criterion. 
The study adopted Coulomb-Mohr failure crite-
rion, expressed by the principal stresses σ1 and 
σ3 equations [7]:

( ) 0
1321
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31311 ;0cos2sin rRforcf ≤≥≥=−++−= σσσσϕϕσσσσ (2)
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where c0, φ0 - consistency and internal friction angle of the rock mass, respectively; Rr
0 - the highest 

tensile stress.

 
Fig. 1. Geometry and the method of straining the 

model of the considered rock mass excavation

Relationship (3) can be converted into a 
form:

0
3

0
1 cRK −= σσ (6)

where
0

0
0
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ϕ
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=K ; Rc
0 - compres-

sive strength of the rock mass 
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In the rock mass upon reaching the border 
state of stress (satisfying the Coulomb-Mohr fail-
ure criterion (6), equation (6) is applicable for the 
assumption σ1 ≥ σ3) begins the process of defor-
mation, accompanied by a rapid decrease in the 
strength of the rock material. Weakened rock ma-
terial can be further deformed at constant stress. 
Coulomb-Mohr failure criterion for rock of re-
duced strength (for the plastic zone or damage 
(cracked)) is expressed in the equation:

cRK −= 31 σσ (7)

where
ϕ
ϕ

sin1
sin1

−
+

=K ; Rc - compressive strength 

of the rock mass in the plastic zone; 

ϕ
ϕ

sin1
cos2

−
=

cRc ; c, φ - consistency and 

internal friction angle of the rock mass in 
the plastic zone, respectively.

It is assumed that the plastic zone is formed 
in the area adjacent to the edge of the excavation, 
when the support load-bearing capacity pa is low-
er than the value given by the equation:

0

0

1
2

K
Rpp c

a +
−

= (8)

The outside destruction zone of the rock mass 
behaves elastically.

It is assumed that the equilibrium equation is 
satisfied in polar coordinates (r, Θ) has a form [13]:

(9)

Substituting (7) in the expression (9), taking 
into account σ1 = σr and σ3 = σθ, and then inte-
grating equation (9) for the boundary condition 
σr = -pa for r = a we obtain equations describing 
the state of stress in the plastic zone:
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The state of stress in the elastic zone (r> R, 
Fig. 1) is determined by the equation:
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where pR - the pressure on the border of the plastic and elastic area; R - radius of the plastic zone.
Pressure pR is determined by the equation:

11

1
1

−−







+


















−

−
=

K

a

K
c

R a
Rp

a
R

K
Rp (14)

Substituting (12) and (13) at r = R in equation (6) is obtained in dependence on the radius of the 
plastic zone:

(15)

where
 ,   0'

c

a
a R

pp =
.

In the plastic area the total deformation: radial εr and circumferential εθ are the sum of their elastic 
(εr 

e and εθ 
e respectively) and plastic parts (εr 

p and εθ 
p respectively):

p
r

e
rr εεε += (16)

pe
θθθ εεε += (17)

Using the law of plastic flow associated with the strength condition (2), expressed by the stress σr 
and σθ and material parameters (φ, c) relating to the plastic zone in the form of:

( ) 0cos2sin1 =−++−= ϕϕσσσσ θθ cf rr (18)

we obtain the following relationships specifying plastic deformations:

( ) ( )ϕλεϕλε θ sin1sin1 −−=+= pp
r (19)

where λ - positive parameter of the equation describing the law of plastic flow [9].
On the basis of equations (19) there is 

pp
r K θεε −= .

Elastic deformations for the plane state of deformation (PSD) are determined by the relationships 
resulting from Hooke’s law [5]:

(20)

(21)

where ν - Poisson’s ratio; E - Young’s modulus.
Using relationships (16-17 and 19-21), one can define the total deformations in the plastic area as:

(22)

(23)

where U - radial displacement.
Equations (22 and 23) implies the following equation expressing the displacement field in the   plastic area:

(24)
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The general form of the equation defining 
the flat field of displacements in the plastic are 
including the dilation parameter β of rock mate-
rial are [16]:

(25)

Equation (24) is valid when β = K, which 
holds for the associated plasticity and indicates 
that the dilation angle ψ is equal to the angle of 
internal friction φ of the rock material. Assum-
ing the angle of dilation ψ > 0 also indicates that 
the rock material in the zone of destruction in-
creases its volume. If the angle ψ is not known, 
its maximum value is taken into account in the 
calculations. When designing and analysing the 
behaviour of the mining excavations based on 
Coulomb-Mohr failure criterion, the value ψ = φ 
is taken as the maximum real value of the angle ψ.

If β = 1 (ψ = 0), then the law of plastic flow 
is disassociated and there is no change in the vol-
ume of rock material.

The solution of equation (25) gives the rela-
tionship on the radial displacement in the plastic 
zone:

(26)

where C - constant of integration.
Integration constant C is determined from the 

condition of continuity of the radial displacement 
at r = R equals:

( )βRUC R= (27)

where UR - radial displacement on the border of 
the plastic and elastic expressed by the 
formula [2]: 

( )RR ppR
E
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+

−=
ν1

(28)

The exact form of the expression (26) will de-
pend on the method of defining the elastic defor-
mation in the plastic zone.

Method I. It is assumed that in the permanent 
plastic deformation, elastic deformation is equal 
to deformations at the border of the plastic and 
elastic area. Substituting the expression specify-
ing the change in radial (Δσr) and peripheral (Δσθ) 
stress due to performing excavation in elastic me-
dium, in (20) and (21) for σr and σθ
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after assuming r = R we obtain:

(31)

With the solution (26) taking into account 
(27), (28) and (31) we obtain the field of elastic-
plastic displacement:
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Method II. It is assumed that the plastic zone is a thick-walled ring whose edges: r = R outer and 
inner r = a are properly loaded with a uniform pressure pR and pressure pa. For such assumptions elastic 
deformations define relationships [2]:
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Integrating (26) after taking into account (33) and (34), we obtain:
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Method III. Elastic strain εr 
e and εθ 

e define the equation:

( ) ( )[ ] ( )[ ]{ }pp
E r

e
r −−−−−−

+
= θσνσννε 11

(36)

( ) ( )[ ] ( )[ ]{ }pp
E r

e −−−−−−
+

= σνσννε θθ 11
(37)

After substituting in (36) and (37) for σr and σθ, respectively equations (10) and (11) determining 
stresses in the plastic zone, and then taking into account (36) and (37) in the expression (ε r

e + βεθ 
e), we 

obtain:

(38)

wherein
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The field of displacements in the plastic area is obtained from (26) after taking therein into account 
(38) is defined in the equation:
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If you ignore elastic strain equation defining 
the field of displacements in the plastic zone, the 
equation has the following form: 

(42)

The solution (42) gives the field of plastic dis-
placement in the form of:

β







=

r
RUU R (43)

THE ANALYSIS OF THE IMPACT 
OF DILATATION AND STRENGTH 
REDUCTION OF THE ROCK MATERIAL 
AND THE METHOD OF DESCRIBING 
DEFORMATIONS IN THE PLASTIC ZONE 
ON THE BEHAVIOUR OF THE ROCK 
MASS-EXCAVATION SYSTEM

Figures 2 and 3 present the curves of radial 
load of the support that balances radial displace-
ments of the excavation contour obtained from 

the equation (43), for three values   of parameter 
β = {1, 2, 3}. Due to the fact that equation (43) 
was obtained assuming the convention of stress 
labelling: negative compression, positive ten-
sion, the values of displacement radial obtained 
from the calculations are negative (the direction 

Fig. 2. Curves of rock mass response according to the 
dilation parameter β (field displacement in the plastic 

area are described in the differential equation (42))
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of the movement to the excavation). For the cal-
culations it was assumed that the excavation was 
made at a depth of 1,000 m in the rock mass, 
with an angle of internal friction φ0 = φ = 30o, 
cohesion c0 = 3.46 MPa, compressive strength of 
the rock mass Rc

0 = 12 MPa, Young’s modulus 
E = 50,000 MPa, Poisson’s ratio ν = 0.5, and a 
uniform initial pressure p = 24 MPa. The pre-
sented results of calculations show that the radial 
displacement of the excavation contour Ua = U for 

r=a corresponding to a given support load pa obtain 
the highest value at β = K = 3, in contrast with 
β = 1 (Fig. 2). For pa/p = 0 and Rc/Rc

0 = 0.8 the 
value of the dimensionless measure Ua/a for β = 
3 is about 2.9 times higher than the value of Ua/a 
obtained for β = 1.

Reducing the strength of the rock material in 
the plastic are is manifested in the development 
of cracks in the rock material and the increase in 
radial displacement towards the excavation (Fig. 
3). The presented results of calculations for Rc/
Rc

0 = {1.0, 0.8, 0.5, 0.3} indicate a significant 
impact of the decline in the strength of the rock 
material in the plastic zone in relation to its initial 
strength at the convergence of the excavation and 
consequently to increase of the radial load pa of 
the support. The reaction of the casing is illus-
trated by curve A (Fig. 3).

Flat field of elastic-plastic displacements in 
plastic area can be described as a (32), (35) or 
(41). These relationships are the result of the ap-
plication of I, II or III method of the description 
of elastic deformations in the plastic area. Figure 
4 shows the effect of these three methods for the 
description of the deformations of the contour of 
the radial displacement of the excavation, and thus 
the pressure exerted on the casing. The results of 
calculations obtained from the dilation parameter 
β = 3, and for the ratio Rc/Rc

0 = 1.0 (Fig. 4a), and 
Rc/Rc

0 = 0.5 (Fig. 4b) are presented. Figure 4 pre-
sents the results of further calculations based on 
equation (43) which determines the visual field 
of displacements without the elastic deformation 
in the plastic zone (variant “0”). The presented 
graphs (Fig. 4) show that the radial displacement 
of the contour of the excavation reaches the high-
est values   for variant “0”. The lowest convergence 
of the excavation contour occurs for method I of 
the description of deformations (Eq. (32)), which 
assumes that in the area of   plastic deformation the 
elastic constants are equal to the deformation at 
the border of the plastic and elastic zone.

Fig. 3. Impact of Rc/Rc
0 on radial displacement con-

tour of the excavation and the value of the pressure 
exerted on the support (the field of displacements 
in the plastic area is described by the differential 

equation (42))

 

Fig. 4. The course of Ua/a changes in the function of pa/p depending on the definition of elastic deformations in 
the plastic zone; a) Rc/Rc

0 = 1.0, b) Rc/Rc
0 = 0.5
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The results of the calculations taking into ac-
count the ratio Rc/Rc

0 = 0.5 and Rc/Rc
0 = 1.0 show 

that the displacement of rocks in the direction of the 
excavation for pa/p is greater for Rc/Rc

0 = 0.5. This 
applies to each method of describing deformations.

The analysis describing the field of displace-
ments in the plastic zone implies that for dilatation 
parameter β = 1 and for ν = 0.5 the response curve 
of the rock mass depicting radial displacement of 
the excavation contour and radial load balanc-
ing thereof pa of the support does not depend on 
the method of defining the elastic deformations 
in the plastic zone. This means that the changes 
of the radial displacement of the rock mass with 
the change of pressure pa is the same for all three 
methods of describing deformations. 

The calculations for β = 1 and for ν ≠ 0.5 show 
the equality of radial displacement values   obtained 
without elastic deformations and determined in 
accordance with method I of the description of 
deformations and the equality of displacement 
contour of the excavation calculated according to 
methods II and III of deformation description. 

The development of plastic zone in the vicin-
ity of the excavation with decreasing pressure pa 
is shown in Figure 5.

The results of calculations presented in Fig-
ure 5 show that with the decrease of the strength 
of the rock material in the plastic zone expressed 
with parameter Rc/Rc

0 range of the plastic zone 
grows. The increase of pressure pa exerted by 
the support limits the extent of the plastic zone. 
Equation (15) shows that in the rock mass with 
a high angle of internal friction the radius of the 
plastic zone is smaller. The radius of the plastic 
zone increases with increasing radius of the exca-
vation and the pressure in the rock mass.

CONCLUSIONS

The analytical solution of determining the 
state of stress and displacement in the vicinity 
of mining excavations were obtained assuming 
the existence of the zone around the excavation 
with a reduced capacity, which is formed when 
the rock material reaches extreme tensile strength. 
The weakening of the rock mass in this area can 
proceed as a result of the development of cracks. 
The processes occurring in the plastic zone and 
its interaction with the resilient region affect the 
state of stress and strain in the vicinity of the ex-
cavation. It can be assumed that the actual state 
of stress in the vicinity of the excavation will be 
between the stress state defined on the assump-
tion that the strength of the material in the plastic 
zone Rc = Rc

0 (elastic-perfectly plastic model of 
the rock mass) and the state of stress defined under 
assumption that Rc = 0 (elastic-brittle rock mass 
model). Thus, the elastic-plastic model of the rock 
taking into account the decrease in the strength 
of the rock material after reaching the criterion 
of strength seems to be more appropriate to use 
in clinical forecasting processes occurring in the 
vicinity of the excavation compared to the model 
of elastic-perfectly plastic or elastic-brittle model. 

This solution allows the assessment of the im-
pact of decline in the strength of the rock material 
in the plastic zone on the field radial displacements 
in the rock mass in the vicinity of the excavation 
and the radius of the plastic zone. The decrease 
in the strength of the rock material in the zone of 
destruction compared to the strength of the initial 
causes an increase in the excavation convergence 
with pressure drop pa (Fig. 3). In the depicted in 
Figure 3, the housing of the response curve (curve 
A) shows that with the decrease in the strength of 
the rock material destruction zone increasing pres-
sure on the support of the rock mass.

Clear impact on the course of the response 
curve of the rock mass has a parameter of dila-
tation β. For a given value of the parameter pa 
higher values   of β correspond to higher values   of 
radial displacement contour of the excavation.

Field of displacement in the plastic zone de-
pends on whether elastic deformations are ignored 
or taken into account. On the other hand, if elas-
tic deformations are taken into account, the figure 
and the numerical value of the expression defining 
the displacement field in the plastic area depend 
on the method of forming the definition of the 
elastic deformation. The calculations carried out 

 
Fig. 5. Development of plastic zone around the mine 
excavation with decreasing pressure pa including the 

impact of the decrease in the strength of the rock 
material
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for the dilatation parameter β = K = 3 show that 
the radial displacement of the contour of the exca-
vation reaches the highest values   for the variant in 
which elastic deformations in the plastic zone are 
ignored. The lowest clamping of excavation con-
tour is obtained for the calculation variant which 
assumes that in the plastic deformation constants 
in the plastic zone are equal to the elastic deforma-
tion at the border of the plastic and elastic plastic 
areas. Elastic-plastic displacement in the plastic 
zone for the case is expressed in the relationship 
(32). The forms of radial displacement changes 
of the rock mass as a function of pressure pa for 
method II and III of defining the elastic deforma-
tions are very similar, with slightly higher values   
of displacements obtained from the calculations 
based on model II of displacement description.
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